Expanded Shale, Clay, and Slate Reference Manual

for

Asphalt Pavement Systems

Author Bob M. Gallaway, P.E. Professor Emeritus - Texas A & M

Expanded Shale, Clay, and Slate Institute

2225 Murray-Holladay Road, Suite 102 Salt Lake City, Utah 84117

> Second Edition Publication No. 5510 ESCSI © 1997

Table of Contents

Section 1	Introduction	1
Section 2.	ESCS Aggregate Industry Overview	2
2.1	History and properties	
	How it is made	
	Aggregate properties	
2.2	Where ESCS aggregate is used	
Section 3.	ESCS Aggregate in the Asphalt Pavement Market	
3.1	Usage	
	Background	
	Industry direction	8
Section 4.	The Benefits and Physical Properties of ESCS Asphalt Pa	avements
4.1	High friction resistance - public safety	
4.2	Automobile damage - windshields, headlamps, paint chip	os 13-15
4.3	Adhesion of asphalt to aggregate	
4.4	Pavement surface texture and aggregate top-size	
4.5	Glare	
4.6	Paint stripes	
4.7	Tire noise	
4.8	Snowplow damage	
4.9	Strength-abrasion resistance	
4.10	Aggregate durability: resistance to freezing, thawing, and	l sulfate action 17
Section 5.	General Design and Construction Information .	
5.1	Specifications	
5.2	Bidding, estimating, and payments	
5.3	Mixture designs	19
5.4	Construction considerations and advantages	19-20
Section 6.	Chip Seal Asphalt-Aggregate Surface Treatment	
6.1	General considerations	
6.2	Proper applications: city streets vs. rural highways	
6.3	Aggregate grading and top size	
6.4	Asphalt type	
6.5	Asphalt and aggregate application rate	
	The excess aggregate menace	
6.6	Embedment depths	
6.7	Weather conditions	
	Rain	

6.8	Construction procedures and equipment	29
	Rolling operations	30
	Spreading aggregate	
6.9	Multi-course surface treatment	33
	Equipment	33
	Asphalt quantities and order of placing	34
6.10	Precautions	
	General	
	Road patches	
6.11	Comments on the handling, construction, and service of ESCS chip	p seal 35
	State and district personnel	
	Resident engineers and contractor personnel	
	Summarizing these observations on ESCS	
Section 7.	Open-Graded Wearing Surfaces (Plant-Mix Seal) .	39
7.1	Use and performance	39
	General	39
	Improve skid resistance	39
	Splash and spray	
	Noise reduction	40
	Hydroplaning	40
	Wheel path	40
	Water-susceptible pavements	40
	Existing road conditions	41
7.2	Aggregate type and skid resistance	41
7.3	Mix design guidelines	42
	Aggregate	42
	Gradation	
	Void content	43
	Tack coat	43
	Asphalt	43
	Stability	
	Design methods	
7.4	Test methods	
7.5	Construction	
	Equipment and procedures	
	Mix temperature	
	Rolling	45
	Traffic	
	Control test	45
	Precautions	45

Section 8.	Hot-Mix Asphalt (HMA) Surface Course	46
8.1	Projects, performance, and superpave	
	Superpave	47
8.2	Design considerations	48
	Weight differences	48
	Design methods and general considerations	48
	Aggregate blending	49
	Workability	50
	Aggregate top size	50
	Rollers	50
	Slumping	50
	Bidding and payment	50
Section 9.	Thin Hot-Mix Asphalt (HMA) Overlays	53
	Minimum weight	53
	Water tightness	53
	Stability	53
	Improved skid resistance	53
	Jet airfields and bridge decks	54-55
Section 10.	Maintenance and Pothole Material (Plant-Mixed)	56-57
10.1	Workability and stability	57
10.2	Storage life	57
10.3	Stripping due to water susceptibility	57
10.4	Mixture design	58
10.5	Field applications	59
	Pothole repair	59
	Adequate and proper tack coat	60
10.6	Plant operations	60
	Batch weights and segregation	60
	Equipment wear	60
	Water vapor release in the plant	60
	Aggregate drying rate and dryer capacity	61
Section 11.	Asphalt-Stabilized Bases with ESCS	62
11.1	Use	62
11.2	Structural design considerations	62
11.3	Mix design considerations	63
	Unit weight	63
	Resistance to the action of water	63
	Aggregate gradation and selection	63
.4	Construction considerations	64

Section 12.	Micro-Surfacing and Slurry Seal		
12.1	Use		
	Multi-course slurries		
	Field conditions		
12.2	Aggregate gradation		
12.3	Asphalt emulsions and tack coat		
12.4	Rate of application		
Section 13.	Stabilized Aggregate Bases (made with ESCS and local soil binder), and		
	ESCS Geotechnical Fills		
13.1	Use		
13.2	Binder material		
13.3	Stabilization of bases and sub-bases		
	Mechanical stabilization (compaction) 70		
	Chemical stabilization		
	Compaction of ESCS Geotechnical Fills		
	Laboratory maximum-dry density		
	Field or in-place density		
Section 14.	Asphalt-Rubber Pavement		
14.1	Asphalt-rubber chip seal		
	Guidelines and specifications for use of asphalt-rubber chip seal		
	Conclusions on the use and advantages of asphalt-rubber chip seal		
	in the city of Phoenix, Arizona		
	Hot-mixed asphalt-rubber concrete pavements (open, dense, and gap-graded) 76		
	Aggregate for dense-graded asphalt-rubber concrete		
	Aggregate for open-graded asphalt-rubber concrete		
	California I-15 asphalt-rubber chip seal project		

iv

Section 1

Introduction

For the purposes of this manual, the term *ESCS* means expanded shale, clay, and slate lightweight aggregates. *ESCS* is a unique ceramic lightweight aggregate prepared by expanding select minerals in a rotary kiln at temperatures over 1000° C.

The Expanded Shale, Clay, and Slate Institute (ESCSI) produced this reference manual to provide an educational reference for ESCS aggregate producers and users in the asphalt pavement market. This manual serves to educate and guide designers, engineers, students, government agencies, and contractors on the advantages, applications, and performance of ESCS aggregate. It is especially useful to designers and contractors who are specifying and using ESCS aggregates for the first time and need guidelines to assure a successful project.

This manual will be particularly valuable to government agencies responsible for the preparation of pavement designs and materials specifications. The design engineers responsible for the introduction and proper use of such materials should also find this manual helpful.

What is more important however, are the public safety benefits of ESCS aggregates that produce long-lasting, high-friction surfaces that are economical, easy to construct, durable, and have a proven performance. Properly designed and constructed ESCS pavement surfaces retain frictional properties (high-friction resistance) for the life of the surface, even under heavy traffic.

Although the information in this manual is current and factual, there are specific differences associated with given materials, environments, and services that require engineering judgment, and construction control to produce a quality job. (Indeed, this is true for any quality product, whether it is a pavement, bridge, or sky scraper).

The physical properties for ESCS aggregate will vary because they are manufactured over a wide geographical area. For precise information on mix design, unit weight, and other physical properties of a particular ESCS material, consult the individual expanded shale, clay, or slate producers. ESCS is available throughout the United States, Canada, and much of the world.

ESCS's low-unit weight require bid forms, bid evaluations, and mix designs to be adjusted or converted to include an equivalent volume measurement rather than by only a weight measurement. This requirement keeps all materials on an equal competitive basis by correctly adjusting for the large difference in yield, caused by ESCS high volume to weight ratio.